a^2
a_2
a^{2+2}
a_{i,j}
x_2^3
\frac{1}{2}
\sqrt{x}
\sqrt[3]{x}
\sum_{i=1}^n i^2
\prod_{i=1}^n x_i
\int_a^b f(x) dx
\lim_{x \to \infty} f(x)
e^{i\pi} + 1 = 0
\sin^2 \theta + \cos^2 \theta = 1
\vec{F} = m\vec{a}
P(A|B) = \frac{P(B|A)P(A)}{P(B)}
\binom{n}{k} = \frac{n!}{k!(n-k)!}
\begin{pmatrix} a & b \\ c & d \end{pmatrix}
f'(x) = \lim_{h \to 0}\frac{f(x+h)-f(x)}{h}
\begin{cases} x + y = 1 \\ 2x - y = 0 \end{cases}